Climate, not land-use, drives a recent acceleration of larch expansion at the forest-grassland ecotone in the southern French alps

Abstract ID: 3.18626 | Accepted as Talk | Talk | TBA | TBA

Baptiste Nicoud (1)
Arthur Bayle (2), Christophe Corona (1), Loïc Francon (3), Philippe Choler (1)
(1) Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
(2) Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva ; Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva,, 66 Boulevard Carl Vogt, CH-1205 Geneva, Switzerland
(3) Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany

Categories: Biodiversity, Ecosystems, Fieldwork
Keywords: No keywords defined

Categories: Biodiversity, Ecosystems, Fieldwork
Keywords: No keywords defined

In recent decades significant forest expansion into treeless alpine zones has been observed across global mountain ranges, including the Alps, driven by a complex interplay of global warming and land-use changes. The upward shift of treelines has far-reaching implications for ecosystem functioning, biodiversity, and biogeochemical cycles. However, climate variables alone account for only a fraction of treeline dynamics, highlighting substantial research gaps concerning the influence of non-climatic factors. This study addresses these gaps by combining dendrochronological methods, high-resolution bioclimatic data, and historical land-use records to investigate treeline dynamics in the southern French Alps. Our results reveal a marked acceleration in tree establishment, starting in the early 2000s, attributable primarily to climate change rather than the pastoral abandonment of the 19th century. We demonstrate that historical land-use changes created predisposing conditions for tree establishment, while recent climate change has increasingly acted as an accelerator for this dynamic. While key climatic factors, such as thermal indicators and growing season length, are identified as significant contributors to treeline shifts, our study highlights the need for further research to disentangle the specific drivers of tree recruitment and survival in the context of ongoing climate change.

N/A
NAME:
TBA
BUILDING:
TBA
FLOOR:
TBA
TYPE:
TBA
CAPACITY:
TBA
ACCESS:
TBA
ADDITIONAL:
TBA
FIND ME:
>> Google Maps

Choose the session you want to submit an abstract. Please be assured that similar sessions will either be scheduled consecutively or merged once the abstract submission phase is completed.

Select your preferred presentation mode
Please visit the session format page to get a detailed view on the presentation timings
The final decision on oral/poster is made by the (Co-)Conveners and will be communicated via your My#IMC dashboard

Please add here your abstract meeting the following requirements:
NO REFERNCES/KEYWORDS/ACKNOWEDGEMENTS IN AN ABSTRACT!
Limits: min 100 words, max 350 words or 2500 characters incl. tabs
Criteria: use only UTF-8 HTML character set, no equations/special characters/coding
Copy/Paste from an external editor is possible but check/reformat your text before submitting (e.g. bullet points, returns, aso)

Add here affiliations (max. 30) for you and your co-author(s). Use the row number to assign the affiliation to you and your co-author(s).
When you hover over the row number you are able to change the order of the affiliation list.

1
2
3
1

Add here co-author(s) (max. 30) to your abstract. Please assign the affiliation(s) of each co-author in the "Assigned Aff. No" by using the corresponding numbers from the "Affiliation List" (e.g.: 1,2,...)
When you hover over the row number you are able to change the order of the co-author list.

1
2
3
4
1
1
1
Close