Calibrating future glacier projections using data assimilation

Abstract ID: 3.12778 | Accepted as Talk | Talk | TBA | TBA

Yeliz Yilmaz (1)
Kristoffer Aalstad (1), Gregoire Guillet (1), David Rounce (2), Brandon Tober (2), Ruitang Yang (1), Regine Hock (1)
(1) University of Oslo, Oslo, Norway
(2) Carnegie Mellon University, Pittsburgh, PA, USA

Categories: Cryo- & Hydrosphere, Remote Sensing
Keywords: Glacier modeling, Data assimilation, Future projections, Glacier runoff, Glacier mass balance

Categories: Cryo- & Hydrosphere, Remote Sensing
Keywords: Glacier modeling, Data assimilation, Future projections, Glacier runoff, Glacier mass balance

Global glacier mass is changing rapidly, and projections of global glacier mass balance under changing climatic conditions are crucial for informed decision-making. Existing glacier projections use relatively simple glacier models constrained by sparse observations. In these projections, model calibration plays a key role in constraining uncertainty. The use of Bayesian data assimilation methods for calibration by integrating multiple emerging observational data sets (in-situ mass balance measurements, climate reanalyses, and satellite remote sensing) to constrain model parameters and their dynamics remains relatively unexplored. Such a probabilistic calibration strategy could enable us to quantify and disentangle uncertainties related to the glacier model, the selected climate model forcing, and internal climate variability.

The Python Glacier Evolution Model (PyGEM) is one of a handful of global glacier models that allow us to simulate the evolution of the mass balance of all glaciers in the world. In this work, we adopt ensemble-based data assimilation methods to calibrate PyGEM model parameters and thus constrain future projections of glacier mass balance across Scandinavia. We compare our results with traditional glacier model calibration algorithms and the Bayesian gold standard Markov Chain Monte Carlo (MCMC) method in PyGEM for glacio-hydrological indicators (surface mass balance and runoff projections) between 2015 and 2100 with four SSP scenarios. This work serves as the kernel for a scalable glacier data assimilation framework to produce policy relevant global glacier projections and scenarios within the recently funded ERC-AdG GLACMASS project. The probabilistic calibration framework developed in this study can in principle be adapted for a wide range of cryospheric applications.

N/A
NAME:
TBA
BUILDING:
TBA
FLOOR:
TBA
TYPE:
TBA
CAPACITY:
TBA
ACCESS:
TBA
ADDITIONAL:
TBA
FIND ME:
>> Google Maps

Choose the session you want to submit an abstract. Please be assured that similar sessions will either be scheduled consecutively or merged once the abstract submission phase is completed.

Select your preferred presentation mode
Please visit the session format page to get a detailed view on the presentation timings
The final decision on oral/poster is made by the (Co-)Conveners and will be communicated via your My#IMC dashboard

Please add here your abstract meeting the following requirements:
NO REFERNCES/KEYWORDS/ACKNOWEDGEMENTS IN AN ABSTRACT!
Limits: min 100 words, max 350 words or 2500 characters incl. tabs
Criteria: use only UTF-8 HTML character set, no equations/special characters/coding
Copy/Paste from an external editor is possible but check/reformat your text before submitting (e.g. bullet points, returns, aso)

Add here affiliations (max. 30) for you and your co-author(s). Use the row number to assign the affiliation to you and your co-author(s).
When you hover over the row number you are able to change the order of the affiliation list.

1
2
1

Add here co-author(s) (max. 30) to your abstract. Please assign the affiliation(s) of each co-author in the "Assigned Aff. No" by using the corresponding numbers from the "Affiliation List" (e.g.: 1,2,...)
When you hover over the row number you are able to change the order of the co-author list.

1
2
3
4
5
6
1
1
2
3
4
5
1
Close