Unravelling the performance of atmospheric radiative transfer schemes in the simulation of mean surface climate in Central Africa using the RegCM5 climate model

Abstract ID: 3.9116 | Accepted as Poster | Requested as: Poster | TBA | TBA

Emma Estelle Djouka Kankeu (1)
Demanou Koudjou, Gabin Parfait (1)

(1) Université de Yaoundé I, 8.774 Youndé 4, 96 Yaoundé 4 Yaoundé, CM

Categories: Atmosphere, Others, Resources
Keywords: albedo, cloud cover, convection scheme, radiative transfer

Categories: Atmosphere, Others, Resources
Keywords: albedo, cloud cover, convection scheme, radiative transfer

Abstract
The content was (partly) adapted by AI
Content (partly) adapted by AI

The theory of radiative transfer in the atmosphere is crucial in the study of climate, because radiative exchanges are at the origin of the atmospheric dynamics. It is therefore important to evaluate this phenomenon in order to be able to take effective measures to tackle climate change. The objective of this work is to evaluate the capability of the RegCM5 climate model to reproduce radiative transfer over Central Africa. The analysis is carried out over a 10-year period, from January 2002 to December 2011 preceded by 1 year as spin-up. RegCM5 model were evaluated using the ERA5 dataset for the radiative transfer parameters (the shortwave radiation [SWR], longwave radiation [LWR], cloud cover [CLT], surface albedo [ALB] and surface temperature), as well as CHIRPS dataset for precipitation. Three subregions were identified for more specific analysis of the model, namely the Sahel, Congo basin and Cameroon highlands. Two radiative schemes were used: the radiative scheme of the community climate model (CCM) and Rapid Radiative Transfer Model (RRTM). The assessment of radiative transfer parameters was carried out by examining their seasonal variability and annual cycles using data from two RegCM5 experiments, RegCM5-CCM3 and RegCM5-RRTM. Before this assessment, a sensibility analysis to convective schemes carried out with the default RegCM5 radiative scheme (CCM3) shows that Grell scheme with Arakawa and Shulber closure is the best scheme to represent key radiation parameters (LWR and SWR). This convective scheme is therefore used for assessing the two Radiative transfer schemes. Results show that both RegCM5 experiments simulate relatively well the variables linked to radiative transfer for the four seasons of the year. However, RegCM5 with RRTM as radiative scheme depicts better performance over all subregions and seasons, suggesting that the choice of this scheme does not depend on land cover, topography and rainfall regimes in a complex region such as Central Africa.

Choose the session you want to submit an abstract. Please be assured that similar sessions will either be scheduled consecutively or merged once the abstract submission phase is completed.

Select your preferred presentation mode
Please visit the session format page to get a detailed view on the presentation timings
The final decision on oral/poster is made by the (Co-)Conveners and will be communicated via your My#IMC dashboard

Please add here your abstract meeting the following requirements:
NO REFERNCES/KEYWORDS/ACKNOWEDGEMENTS IN AN ABSTRACT!
Limits: min 100 words, max 350 words or 2500 characters incl. tabs
Criteria: use only UTF-8 HTML character set, no equations/special characters/coding
Copy/Paste from an external editor is possible but check/reformat your text before submitting (e.g. bullet points, returns, aso)

Add here affiliations (max. 30) for you and your co-author(s). Use the row number to assign the affiliation to you and your co-author(s).
When you hover over the row number you are able to change the order of the affiliation list.

1
1

Add here co-author(s) (max. 30) to your abstract. Please assign the affiliation(s) of each co-author in the "Assigned Aff. No" by using the corresponding numbers from the "Affiliation List" (e.g.: 1,2,...)
When you hover over the row number you are able to change the order of the co-author list.

1
1
1
2
3
4
1
Close